
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1

Elevating Formal Specification Extortion Using Quality

Metrics to Appraise Code Excellence

S.Kishore Verma1 , A.Senthamarai Selvan2, S.Suresh3

1,2,3 Assistant Professor, Department of Computer Science and Engineering

C.Abdul Hakeem College of Engineering, Melvisharam.

Abstract

To generate a high quality software applications, a strong

emphasis on formal specification; especially during the later

phases of software development is, necessary. Formal

specifications plays vital temperament in program testing,

optimization, refactoring, documentation, and, most importantly,

debugging and repair. Nevertheless, they are difficult to write

manually, and automatic mining techniques suffer from 90-99 %

false positive rates. In this paper, we propose to augment a

temporal-property miner by incorporating code quality metrics to

address the problem. We evaluate code quality by extracting

additional information from the software engineering process and

using information from code that is more likely to be correct, as

well as code that is less likely to be correct. While used as a

preprocessing step for an existing specification miner, our method

identifies which input is most analytic of correct program behavior,

which allows off-the-shelf techniques to learn the same number of

specifications using only 45 percent of their original input.

According to novel inference technique, our method has few false

positives in practice under 89% (i.e. 63% when balancing precision

and recall, 3% when focused on precision), whereas still finding

useful specifications that find many bugs.

KeyWords:-Specification mining, machine learning, software

engineering, code metrics, program understanding.

1. Introduction

Debugging, testing, maintaining, optimizing, refactoring,

and documenting software, are time consuming, but remain

critically important. Such maintenance is reported to

consume up to 90 % of the total cost of software projects. A

key maintenance concern is incomplete documentation.

Faulty and pram behavior in deployed software costs up to

$70 billion each year in the US [12]. Manual processes and

especially automated tool support for finding and fixing

errors in deployed software habitually entail formal

specifications of correct program behavior (e.g., [6]); it is

hard to renovate a coding error without a obvious view of

what “correct” program behavior entails. Formal program

specifications are hard for humans to construct, and wrong

specifications are tricky for humans to debug and modify.

Therefore, researchers have developed techniques to

automatically infer specifications from program source code

or execution traces [1], [2], [4], [6]. These techniques

typically produce specifications in the form of finite state

machines that depict legal sequences of program behaviors.

Alas, these existing mining techniques are not enough

precise in practice. A class of miners produces hefty but

approximate specifications that must be corrected manually.

As these hefty specifications are imprecise and tricky to

debug, this paper focuses on a second class of techniques

that produce a larger set of smaller and more precise

candidate specifications that may be easier to evaluate for

correctness. Earlier research efforts have developed

techniques for mining them automatically [4], [14]. Such

techniques typically produce a hefty set of candidate

specifications, often in a ranked list (e.g., [4]). A

programmer must still evaluate this ranked list of candidate

specifications to detach the true specifications from the

false positive specifications. In this perception, a false

positive is a candidate specification that does not portray

required behavior: A program trace may violate such a

“specification” and still be considered correct. A true

specification illustrates behavior that may not be violated on

any program trace or the program contains an error. Alas,

techniques that produce this type of ranked list of smaller

candidates suffer from prohibitively high false positives

rates (90-99 %) [14], limiting their practical utility. This

paper develops an automatic specification miner that

balances true positives-as required behaviors-with false

positives-non required behaviors.

1.1 Necessitate of Temporal Safety Specifications

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2

A partial-correctness temporal safety property is a formal

specification of an aspect of required or correct program

behavior; they often portray how to manipulate important

program resources. We refer to such properties as

“specifications” for the remainder of this paper. Such

specifications can be represented as a finite state machine

that encodes legitimate sequences of events. Fig. 1 shows

source code and a specification relating to SQL injection

attacks [8]. In this example, one possible event involves

reading untrusted data from the network, another sanitizes

input data, and a third performs a database query. Typically,

each important resource is tracked with a separate finite

state machine that encodes the specification that applies to

its manipulation. The execution of program adheres to a

given specification if and only if it terminates with the

corresponding state machine in an accepting state (where

the machine starts in its start state at program

initialization).Or else, the program violates the specification

and contains an error. In this paper, we concentrate on the

simplest and most common type of temporal specification: a

two-state finite state machine, [7], [14]. A two-state

specification state that an event a must always eventually be

followed by event b. This corresponds to the regular

expression (ab)
*
 which we write <a,b>. We protest on this

type of property because mining FSM specifications with

more than two states is historically imprecise, and

debugging such specifications manually is difficult.

1.2 Specification Mining Exploitation

Specification mining inquires to generate formal

specifications of correct program behavior by scrutinizing

actual program behavior. Program behavior is naturally

portrayed in terms of sequences of function calls or other

important events. Examples of program behavior may be

composed statically from source code (e.g., [4]) or

dynamically from instrumented executions on indicative

workloads. A specification miner scrutinizes such traces

and generates candidate specifications, which must be

verified by a human programmer. Some miners produce a

single finite automaton policy with many states [2]. Others

produce many small automata of a fixed form [1], [8], [14].

As large automata are harder to verify or debug, we choose

to focus on the second, as described above. Miners can also

be led astray by strategy violations, as they seek to detect

correct behavior from code that may be incorrect. The rest

of this paper is structured as follows: We discuss related

works in Section 2. Section 3 illustrates our approach to

specification mining, including the quality metrics used. In

Section 4, we present experiments supporting our claims

and evaluating the effectiveness of our miner. We conclude

in Section 5.

2. Related Works

Our work is most related to the two distinct fields of

specification mining and software quality metrics.

2.1 Preceding Works in Specification Mining

Some of the research presented in this paper was previously

presented [7], [14]. This work is intimately related to

existing specification mining algorithms, of which there are

a considerable number (see [14] for a survey). Our loom

extends the ECC [4] and WN [14] techniques. Both mine

two-state temporal properties (referred to as specifications

in this paper) from static program traces, and use heuristics

and statistical measures to filter true from false positives.

WN progress on the results of ECC by tapering the criteria

used to pick candidate specifications (e.g., the candidate

specification must render a violation along at least one

exceptional path) and by considering additional source code

and software engineering features (e.g., whether the events

are defined in the same library or package). We sanctify

both techniques in Section 3.2. We also use some of the

same benchmarks in our evaluation to allow explicit

comparison, and incorporate the features used by the

previous miners into our own

.

 2.2 Preceding works in Software Quality Metrics

A complete review of software quality metrics is outside the

scope of this paper; instead, we highlight several notable

looms. Halstead proposed Software Science [5] (which did

not prove accurate in practice [6]) to provide easily

measurable, universal source code attributes. Function Point

Analysis (FPA) estimates value delivered to a customer,

which can help approximate, for example, an application’s

budget, the productivity of a software team,the software

size or complexity, or the amount of testing necessary.

Cyclomatic complexity estimates the quantity of decision

logic in a piece of software, and remains in industrial use to

measure code quality and impose limits on complexity [10].

Chidamber and Kemerer proposed and evaluated six metrics

(referred to as the CK metrics in this paper) to express the

complexity of an object-oriented design [3]; these metrics

appear to correlate with software quality, defined as

“absence of defects.” We go beyond than these metrics by

examining additional software engineering artifacts to

measure quality. Unlike FPA; our exertion does not

consider usefulness of code. Unlike Software Science, our

model does not assume an a priori combination of features.

However, we evaluate the utility of both Cyclomatic

complexity and of the CK metrics in our model (see Section

4.1.2). In recent times, Nagappan and Ball explored the

correlation between software dependences, code churn

(roughly, the amount that code has been modified as

measured by source control logs), and post release failures

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

3

in the Windows Server 2003 operating system [9]. This

implies that more classy measures of churn might be more

predictive in our model. Graves et al. similarly attempt to

predict errors in code by mining source control histories.

3. Our Loom

We present a new specification miner that works in three

stages. First, it statically estimates the quality of source

code fragments. Second, it elevates those quality judgments

to traces by considering all code visited along a trace.

Finally, it weights each trace by its quality when counting

event frequencies for specification mining. Code quality

information may be gathered either from the source code

itself or from related artifacts, such as version control

history. By enhancing the trace language to incorporate

information from the software engineering process, we can

appraise the quality of every piece of information

supporting a candidate specification (traces that adhere to a

candidate as well as those that violate it and both high and

low-quality code) on which it is followed and more

accurately evaluate the probability that it is legal. Section

3.1 provides a detailed description of the set of features we

have chosen to approximate the quality of code. Section 3.2

minutiae our mining algorithm.

3.1 Minutiae of Quality Metrics in our Loom

We characterize and evaluate two sets of metrics. The first

set consists of seven metrics preferred to approximate code

quality. Certainly, a major notion of this paper is that

lightweight and imperfect metrics, when used in

combination, can usefully approximate quality for the

purposes of enhanced specification mining. Hence, we

focus on selecting metrics that can be rapidly and

automatically computed using generally available software

artifacts, such as the source code or version control

histories. The second set of metrics consists of beforehand

proposed measures of code complexity. We use these

primarily as baselines for our analysis of metric power in

Section4 this evaluation may also be independently useful

given their persistent use in practice [10].

The metrics in the first set (“quality metrics”) are:

Code churn. Earlier research has shown that frequently or

recently modified code is more likely to contain errors [22].

Author rank. We infer that the author of a piece of code

influences its quality. A senior developer who is very familiar

with the project and has performed many edits may be more

familiar with the project’s invariants than a less experienced

developer.

Code clones. We infer that code that has been duplicated

from a location may be more error prone because it has not

necessarily been specialized to its new context (e.g., copy-

paste code).

 Code readability. Buse and Weimer developed a code metric

trained on human perceptions of readability or

understandability. The metric uses textual source code

features—such as number of characters, length of variable

names, or number of comments—to predict how humans

would judge the code’s readability. More readable code is less

likely to contain errors.
Path feasibility. Our specification mining technique

operates on statically enumerated traces, which can be

acquired without indicative workloads or program

instrumentation. Infeasible paths are an unfortunate artifact

of static trace enumeration, and we claim that they do not

encode programmer intentions.

Path frequency. We speculate that common paths that are

often executed by indicative workloads and test cases are more

likely to be correct. We use a research tool that statically

estimates the relative runtime frequency of a path through a

method , normalized as a real number.

Path density. We speculate that a method with more

possible static paths is less likely to be correct because there

are more corner cases and possibilities for error. We define

“path density” as the number of traces it is possible to

enumerate in each method, in each class, and over the entire

project. Path density is expressed in whole numbers and can be

normalized to the maximum number of enumerated paths

(30/method, in our experiments).

Fig2 Features used by our miner to evaluate a candidate
specification<a,b>.Mi is quality metric lifted to sets of traces
Metrics in the second class(“complexity metrics”) are:

Cyclomatic complexity. McCabe defined cyclomatic

complexity to quantify the decision logic in a piece of

software. A method’s complexity is defined as M= E –N+

2P, where E is the number of edges in the method’s control

flow graph, N is the number of nodes, and P is the number

of connected components.

CK metrics. Chidamber and Kemerer proposed a suite of

hypothetically grounded metrics to approximate the

complexity of an object-oriented design [3]. The following

six metrics apply to a particular class (i.e., a set of methods

and instance variables):1.Weighted methods per class

(WMC).2. Depth of inheritance tree (DIT).3. Number of

children (NOC). 4.Coupling between objects (CBO).5.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4

Response for a class (RFC). 6.Lack of cohesion in methods

(LOCM).

3.2 Minutiae of our Mining Algorithm

Our mining algorithm extends our preceding WN miner

[7],[14], notably by including quality metrics from Section

3.1. Our miner takes as input:

1. The program source code P. The variable l varies over

source code locations. The variable l represents a set of

locations.

2. A set of quality metrics M1 . . . Mq. Quality metrics may

either individual locations l to measurements, with Mi (l) €R

(e.g., code churn) or intact traces to measurements, where

Mi (l) €R (e.g., path feasibility).

3. A set of important events, generally taken to be all of

the function calls in P. We use the variables a, b, etc., to

range over ∑.

Our miner generates as output a set of candidate

specifications C = {<a, b>| a should be followed by b}. We

manually evaluate candidate specification legality. Our

algorithm first statically enumerates a finite set of intra

procedural traces in P. Because any nontrivial program

contains an infinite number of traces, this process requires

an enumeration strategy. We perform a breadth-first

traversal of paths for each method m in P. We emit the first

k such paths, where k is specified by the programmer.

Larger values of k provide more information to the mining

analysis with a corresponding slowdown. Experimentally,

we find that very large k provide diminishing returns in the

tradeoff between correctness and time/space. Typical values

are 10 ≤ k ≤ 30. To gather information about loops and

exceptions while ensuring termination, we pass through

loops no more than once, and assume that branches can be

either taken or not and that an invoked method can either

terminate normally or raise any of its declared exceptions.

Thus, a path through a loop represents all paths that take the

loop at least once, a non exceptional path represents all non

exceptional paths through that method, can be either taken

or not and that an invoked method can either terminate

normally or raise any of its declared exceptions. Thus, a

path through a loop represents all paths that take the loop at

least once; a non exceptional path represents all non

exceptional paths through that method, etc. This approach is

consistent with other researchers’ path enumeration

strategies, including those used by some of our metric-

collection techniques. We find that the level of detail

provided by this strategy is adequate for our purposes, but

note that it is possible to collect additional detail, such as by

increasing the number of loop iterations. This process

produces a set of traces T. A trace t is a sequence of events

over ∑; each event corresponds to a location l. We write a €

t if event a occurs in trace t and a . . . b € t if event a occurs

and is followed by event b in that trace. We note whether a

trace involves exceptional control flow; this judgment is

written Error (t). Next, our miner lifts quality metrics from

individual locations to traces, where necessary. This lifting

is parametric with respect to an aggregation function A:

P(R) →R. We use the functions max, min, span, and

average to summarize quality information over a set of

locations l. M
A

denotes a quality metric M lifted to traces:

M
A

(t)=A({M(l)|l€t}) 1

(metrics that operate over sets of locations do not need to be

aggregated; M
A

(t)=M(l) where l is the set of locations in

t).M denotes the metric lifted again to work on sets of

traces(T)= A({M
A
(t)|t€T}). Finally, we consider all possible

candidate specifications. For each a and b in ∑, we collect a

number of features. Fig. 2 shows the set of features our

miner uses to evaluate a candidate specification <a, b>. Nab

denotes the number of times b follows a in a non error

trace. Na denotes the number of times a occurs in a normal

trace, with or without b. We similarly write Eab and Ea for

these counts in error traces.SPab = 1 when a and b are in the

same package. DFab =1when dataflow relates a and b: when

every value and receiver object expression in b also occurs

in a [14, Section 3.1]. z is the statistic for comparing

proportions used by the ECC miner to rank candidate

specifications. The set of features further includes the

aggregate quality for each lifted metric M
A
. We write Miab

(resp.Mi a) for the aggregate metric values on the set of

traces that contain a followed by b (resp. contain a). As we

have multiple aggregation functions and metrics, Mia

actually corresponds to over a dozen individual features.

Tab.1. Analysis of variance of features in our model. The bottom four

features are present in the WN miner [31].
When combined with the aforementioned statistical

measurements and frequency counts, each pair <a, b> is

described by over 30 total features fI. We avoid asserting an

a priori relationship between these features and whether a

pair represents a true specification. Instead, we will build a

classifier that examines a candidate specification and, based

on learned a linear combination of its feature values,

determine whether it should be emitted as a candidate

specification. A training stage, detailed in Section 4, is

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

5

required to learn an appropriate classifier relating features

to specification likelihood.

4. Experiments
In this section, we empirically evaluate our approach. We

begin by considering the constructed linear model relating

code quality metrics to the likelihood that a candidate is a

true specification, and how this model can be used as a

specification miner.

4.1 Prognostic Control of Quality Metrics

In this section, we evaluate the coefficients of the linear

model to understand the overall predictive power of each of

our proposed quality metrics, compare the utility of the

metrics on different benchmarks and qualitatively analyze

observed differences, and establish the independence of

many of the quality metrics.

marks arouBenchnd Quality Metrics

Our first experiment evaluates the relative importance of

our quality metrics. We perform a per-feature analysis of

variance on the linear model; the results are shown in

Tab.1. All of the quality metrics defined in Section 3.1,

except Cyclomatic complexity, had a significant main effect

(p≤0:05). The code churn metric, encoding how frequently

and recently a line of code has been changed in the source

control repository, was our most important feature. Path

feasibility is of moderate predictive power; it is, to our

knowledge, the only feature that had been previously

investigated in the context of mining [2]. The author rank

metric is significantly predictive in this analysis,

overturning previous observations [7] that it has little

predictive power. These experiments involve a much larger

benchmark set (1.5 M versus 0.8 M LOC). In addition, we

enumerate 30 traces per method; in previous work, we

enumerated 10. These differences appear to account for the

change: On these benchmarks, author rank increases in

importance by 50 percent for every 10 additional traces per

method generated between 10 and 30. The previous set of

benchmarks may have been insufficiently varied and the

previous set of traces insufficiently deep, resulting in an

imprecise model. We also evaluated the predictive power of

traditional complexity metrics: Cyclomatic complexity and

the six CK metrics for object-oriented design complexity

(recall that we weight all methods equally for the purposes

of the WMC metric). Our analysis of variance shows that

Cyclomatic complexity has no significant effect on the

model, and is not predictive for whether code conforms to

specifications for correct behavior. This is consistent with

previous research suggesting that Cyclomatic complexity is

not predictive for code faults [11]. The six CK metrics,

however, vary in predictive power, though all have a

significant main effect. With the exception of response for a

class, which is meant to approximate the interconnectedness

of the design, the CK metrics are less predictive than the

other proposed quality metrics. These results suggest that

the CK metrics may indeed capture an element of code

quality or complexity, though they vary in their ability to do

so. In our previous work that examined the relationship

between error traces and specification false positive rates

[14], we used several criteria to select candidate pairs:

Every event b in an event pair must occur at least once in

exception cleanup code (“Exceptional Path”), there must be

at least one error trace with a but without b (“One

Error”),both events must be declared in the same package

(“Same Package”), and every value and receiver object

expression in b must also be in a “Dataflow”). We included

these features in our model to determine their predictive

power. The results are shown in the lower section of Fig. 5.

The “Exceptional Path” and “One Error” conditions affect

the model quite strongly, while the “Same Package” and

“Dataflow” conditions are less significant. They are not as

predictive as Code Churn, our most predictive metric.

4.2 Rendering of Quality for Specification Mining

Our second experiment presents empirical evidence that our

quality metrics improve an existing technique for automatic

specification mining. For each of our benchmarks, we run

the unmodified WN miner [14] on multiple input trace sets

of varying levels of quality. The quality of a trace is defined

as a linear combination of the metrics from Section 3.1,

with coefficients based on their relative predictive power

for specification mining (the F column in Tab.1); we use

this measurement to sort the input trace set from highest to

lowest quality. We compare WN’s performance on random

baseline sets of static traces to its performance on high-

quality (and low-quality) subsets of those traces.

Fig. 3. Performance of the WN specification miner on subsets of the total

trace set. The y-axis shows the percentage of the possible true

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

6

specifications mined. The false positive rate on high quality (85 percent) is
lower than on random (89 percent).
For generality, we restrict attention to feasible traces, since

other miners such as JIST already disregard infeasible paths

[2]. In total on all of the benchmarks, WN miner produces

86 real specifications. On average, WN finds all of the same

specifications using only the top 45 percent highest quality

traces: 55 percent of the traces can be dispensed with while

preserving true positive counts. Since static trace

enumeration can be expensive and traces are difficult to

obtain [13], reducing the costs of trace gathering by factor

of 2 is significant. As a point of comparison, when a

random 55 percent of the traces are discarded, we find only

58 true specifications in total (67 percent of the total

possible set), with a 3 percent higher rate of false positives.

We next explore the impact that the quality of a trace set

has on mining success by passing proportions of the total

input set (all traces from all benchmarks) to the WN miner.

We perform mining on the top N percent of the traces (the

“High-Quality” traces), the bottom N percent of the traces

(the “Low-Quality” traces), and a random N percent of the

traces. For the Random” results, we presented the average

of five runs on different random subsets; error bars denote

one standard deviation in either direction. Fig. 3 presents

the results of this experiment by showing the percentage of

the total specification set mined by WN at each trace set

size for sets of high, random, and low-quality traces. We

conclude that trace quality has a strong impact on the

success of the miner. First, the higher quality traces allow

the miner to find more specifications on smaller input sets

than do the randomly selected traces; the low-quality traces

consistently yield far fewer true specifications.

Fig. 4. A finite state machine describing the Hibernate Session API

To highlight one point on the graph: On 25 percent of the

input, the high-quality traces yield 65 percent of the total

possible mined specifications. By contrast, the random

traces yield less than half, at 43 percent, and the low-quality

traces, only 2 percent (only two true specifications!). By the

time the top-quality traces have yielded all possible true

specifications, the random traces have found 88 percent,

and the low-quality traces, 63 percent.

4.3 Specification Mining on Quality-Based

A leave-one-out analysis shows that including the CK metrics

in the model raises both the true and false positive rates. As our

goal is useful specifications with few false positives, we omit

features, even those that are predictive for true positives that

increase the false positive rate substantially. For each

benchmark, we report the number of true and false positive

candidates returned (determined by manual verification).

Recall the normal miner minimizes both false positives and

negatives, while our precise miner minimizes false

positives. For comparison, we also show results of the WN

[14] and ECC [4] mining techniques. The normal miner

finds useful specifications with a low false positive rate. It

improves on the false positive rate of WN by 26 percent,

while still finding 72 percent of the same specifications. It

finds four times as many true specifications as ECC.

Moreover, the specifications that it finds find more

violations on average than those found by WN: 884

violations, or 13 per valid specification, compared to WN’s

426, or seven per valid specification. The precise miner

produces only one false positive, on Hibernate:

<S.beginTransaction, T.commit>. Fig. 4 shows the relevant

API. The candidate behavior is not required because one

can legally call T.rollback instead of T.commit. However,

there are no traces on which the false candidate is followed

on which the true specification is not, and very few on

which the false candidate is violated while the true

candidate is not. The precise miner finds fewer valid

specifications than either the normal miner or the WN miner

(it finds almost twice as many true specifications as the

ECC technique), but its 3 percent false positive rate

approaches levels required for automatic use. Despite the

one false positive and the fact that it finds 34 percent as

many specifications as WN, the precise miner still finds 53

percent of the violations: Each candidate inspected yields

11 violations on average. This suggests that the candidates

found by the precise miner are among the most useful.

5. Conclusion
Existing automatic specification miners that discover two-

state temporal properties have prohibitively high false

positive rates. An important problem with these techniques

is that they treat all parts of a program as equally indicative

of correct behavior. We instead measure code quality to

distinguish between true and false candidate specifications.

Our metrics include predicted execution frequency, code

clone detection, code churn, readability, and path feasibility,

among others. We also evaluate well-known complexity

metrics when used in specification mining. Our loom

improves the performance of existing trace-based miners by

focusing on high-quality traces. Compared to previous

work, we obtain equivalent results using only 45 percent of

the input and with a slightly, but consistently, lower rate of

false positives. Our method can also be used alone: To our

acquaintance, this is the first miner of two-state temporal

properties to maintain a false positive rate under 89 percent.

We believe that our method is an important first step toward

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

7

real-world utility of automated specification mining, as well

as to the increased use of quality metrics in other analyses.

References
[1] Claire Le Goues and Westley Weimer “Measuring Code

Quality to Improve Specification Mining” IEEE Transactions on

Software Engineering, Vol. 38, No. 1, January/FEBRUARY 2012

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of

Interface Specifications for Java Classes,” Proc. ACM

SIGPLANSIGACT Symp. Principles of Programming Languages,

2005.

[3] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.

476-493, June 1994.

[4] D.R. Engler, D.Y. Chen, and A. Chou, “Bugs as Inconsistent

Behavior: A General Approach to Inferring Errors in Systems

Code,” Proc. Symp. Operating System Principles, pp. 57-72, 2001

[5] M. Halstead, Elements of Software Science. Elsevier, 1977.

[6] P.G. Hamer and G.D. Frewin, “M.H. Halstead’s Software

Science -A Critical Examination,” Proc. Int’l Conf. Software Eng.,

pp. 197-206, 1982.

[7] C. Le Goues and W. Weimer, “Specification Mining with Few

False Positives,” Proc. Int’l Conf. Tools and Algorithms for the

Construction and Analysis of Systems, pp. 292-306, 2009.

[8] V.B. Livshits and M.S. Lam, “Finding Security Errors in Java

Programs with Static Analysis,” Proc. USENIX Security

Symp.,pp. 271-286, Aug. 2005.

[9] N. Nagappan and T. Ball, “Using Software Dependencies and

Churn Metrics to Predict Field Failures: An Empirical Case

Study,” Proc. Int’l Symp. Empirical Software Eng. and

Measurement,pp. 364-373, 2007.

[10] J.C. Sanchez, L. Williams, and E.M. Maximilien, “On the

Sustained Use of a Test-Driven Development Practice at IBM,”

Proc. AGILE,pp. 5-14, Aug. 2007.

[11] M. Shepperd, “A Critique of Cyclomatic Complexity as a

Software Metric,” Software Eng. J., vol. 3, no. 2, pp. 30-36, 1988.

[12] J. Sutherland, “Business Objects in Corporate Information

Systems,” ACM Computing Surveys, vol. 27, no. 2, pp. 274-

276,1995.

[13] W. Weimer and N. Mishra, “Privately Finding

Specifications,”IEEE Trans. Software Eng., vol. 34, no. 1, pp. 21-

32, Jan./Feb. 2008.

[14] W. Weimer and G.C. Necula, “Mining Temporal

Specifications for Error Detection,” Proc. Int’l Conf. Tools and

Algorithms for the Construction and Analysis of Systems, pp. 461-

476, 2005.

