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Abstract 

To generate a high quality software applications, a strong 

emphasis on formal specification; especially during the later 

phases of software development is, necessary. Formal 

specifications plays vital temperament in program testing, 

optimization, refactoring, documentation, and, most importantly, 

debugging and repair. Nevertheless, they are difficult to write 

manually, and automatic mining techniques suffer from 90-99 % 

false positive rates. In this paper, we propose to augment a 

temporal-property miner by incorporating code quality metrics to 

address the problem. We evaluate code quality by extracting 

additional information from the software engineering process and 

using information from code that is more likely to be correct, as 

well as code that is less likely to be correct. While used as a 

preprocessing step for an existing specification miner, our method 

identifies which input is most analytic of correct program behavior, 

which allows off-the-shelf techniques to learn the same number of 

specifications using only 45 percent of their original input. 

According to novel inference technique, our method has few false 

positives in practice under 89% (i.e. 63% when balancing precision 

and recall, 3% when focused on precision), whereas still finding 

useful specifications that find many bugs. 
 

KeyWords:-Specification mining, machine learning, software 

engineering, code metrics, program understanding. 

 

1. Introduction 
 

Debugging, testing, maintaining, optimizing, refactoring, 

and documenting software, are time consuming, but remain 

critically important. Such maintenance is reported to 

consume up to 90 % of the total cost of software projects. A 

key maintenance concern is incomplete documentation. 

Faulty and pram behavior in deployed software costs up to 

$70 billion each year in the US [12]. Manual processes and 

especially automated tool support for finding and fixing 

errors in deployed software habitually entail formal 

specifications of correct program behavior (e.g., [6]); it is 

hard to renovate a coding error without a obvious view of 

what “correct” program behavior entails. Formal program 

specifications are hard for humans to construct, and wrong 

specifications are tricky for humans to debug and modify. 

Therefore, researchers have developed techniques to 

automatically infer specifications from program source code 

or execution traces [1], [2], [4], [6]. These techniques 

typically produce specifications in the form of finite state 

machines that depict legal sequences of program behaviors. 

Alas, these existing mining techniques are not enough 

precise in practice. A class of miners produces hefty but 

approximate specifications that must be corrected manually. 

As these hefty specifications are imprecise and tricky to 

debug, this paper focuses on a second class of techniques 

that produce a larger set of smaller and more precise 

candidate specifications that may be easier to evaluate for 

correctness. Earlier research efforts have developed 

techniques for mining them automatically [4], [14]. Such 

techniques typically produce a hefty set of candidate 

specifications, often in a ranked list (e.g., [4]). A 

programmer must still evaluate this ranked list of candidate 

specifications to detach the true specifications from the 

false positive specifications. In this perception, a false 

positive is a candidate specification that does not portray 

required behavior: A program trace may violate such a 

“specification” and still be considered correct. A true 

specification illustrates behavior that may not be violated on 

any program trace or the program contains an error. Alas, 

techniques that produce this type of ranked list of smaller 

candidates suffer from prohibitively high false positives 

rates (90-99 %) [14], limiting their practical utility. This 

paper develops an automatic specification miner that 

balances true positives-as required behaviors-with false 

positives-non required behaviors. 

 
 

1.1 Necessitate of Temporal Safety Specifications 
 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

2 
 

A partial-correctness temporal safety property is a formal 

specification of an aspect of required or correct program 

behavior; they often portray how to manipulate important 

program resources. We refer to such properties as 

“specifications” for the remainder of this paper. Such 

specifications can be represented as a finite state machine 

that encodes legitimate sequences of events. Fig. 1 shows 

source code and a specification relating to SQL injection 

attacks [8]. In this example, one possible event involves 

reading untrusted data from the network, another sanitizes 

input data, and a third performs a database query. Typically, 

each important resource is tracked with a separate finite 

state machine that encodes the specification that applies to 

its manipulation. The execution of program adheres to a 

given specification if and only if it terminates with the 

corresponding state machine in an accepting state (where 

the machine starts in its start state at program 

initialization).Or else, the program violates the specification 

and contains an error. In this paper, we concentrate on the 

simplest and most common type of temporal specification: a 

two-state finite state machine, [7], [14]. A two-state 

specification state that an event a must always eventually be 

followed by event b. This corresponds to the regular 

expression (ab)
*
 which we write <a,b>. We protest on this 

type of property because mining FSM specifications with 

more than two states is historically imprecise, and 

debugging such specifications manually is difficult.  
 

1.2 Specification Mining Exploitation 
 

Specification mining inquires to generate formal 

specifications of correct program behavior by scrutinizing 

actual program behavior. Program behavior is naturally 

portrayed in terms of sequences of function calls or other 

important events. Examples of program behavior may be 

composed statically from source code (e.g., [4]) or 

dynamically from instrumented executions on indicative 

workloads. A specification miner scrutinizes such traces 

and generates candidate specifications, which must be 

verified by a human programmer. Some miners produce a 

single finite automaton policy with many states [2]. Others 

produce many small automata of a fixed form [1], [8], [14]. 

As large automata are harder to verify or debug, we choose 

to focus on the second, as described above. Miners can also 

be led astray by strategy violations, as they seek to detect 

correct behavior from code that may be incorrect. The rest 

of this paper is structured as follows: We discuss related 

works in Section 2. Section 3 illustrates our approach to 

specification mining, including the quality metrics used. In 

Section 4, we present experiments supporting our claims 

and evaluating the effectiveness of our miner. We conclude 

in Section 5.  
 

2. Related Works 

 

Our work is most related to the two distinct fields of 

specification mining and software quality metrics. 
 

2.1 Preceding Works in Specification Mining 
 

Some of the research presented in this paper was previously 

presented [7], [14]. This work is intimately related to 

existing specification mining algorithms, of which there are 

a considerable number (see [14] for a survey). Our loom 

extends the ECC [4] and WN [14] techniques. Both mine 

two-state temporal properties (referred to as specifications 

in this paper) from static program traces, and use heuristics 

and statistical measures to filter true from false positives. 

WN progress on the results of ECC by tapering the criteria 

used to pick candidate specifications (e.g., the candidate 

specification must render a violation along at least one 

exceptional path) and by considering additional source code 

and software engineering features (e.g., whether the events 

are defined in the same library or package). We sanctify 

both techniques in Section 3.2. We also use some of the 

same benchmarks in our evaluation to allow explicit 

comparison, and incorporate the features used by the 

previous miners into our own 

. 

 2.2 Preceding works in Software Quality Metrics  
 

A complete review of software quality metrics is outside the 

scope of this paper; instead, we highlight several notable 

looms. Halstead proposed Software Science [5] (which did 

not prove accurate in practice [6]) to provide easily 

measurable, universal source code attributes. Function Point 

Analysis (FPA)  estimates value delivered to a customer, 

which can help approximate, for example, an application’s 

budget, the productivity of a software team,the software 

size or complexity, or the amount of testing necessary. 

Cyclomatic complexity estimates the quantity of decision 

logic in a piece of software, and remains in industrial use to 

measure code quality and impose limits on complexity [10]. 

Chidamber and Kemerer proposed and evaluated six metrics 

(referred to as the CK metrics in this paper) to express the 

complexity of an object-oriented design [3]; these metrics 

appear to correlate with software quality, defined as 

“absence of defects.” We go beyond than these metrics by 

examining additional software engineering artifacts to 

measure quality. Unlike FPA; our exertion does not 

consider usefulness of code. Unlike Software Science, our 

model does not assume an a priori combination of features. 

However, we evaluate the utility of both Cyclomatic 

complexity and of the CK metrics in our model (see Section 

4.1.2). In recent times, Nagappan and Ball explored the 

correlation between software dependences, code churn 

(roughly, the amount that code has been modified as 

measured by source control logs), and post release failures 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013 
ISSN: 2320 - 8791 
www.ijreat.org 

 

www.ijreat.org 
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) 

3 
 

in the Windows Server 2003 operating system [9]. This 

implies that more classy measures of churn might be more 

predictive in our model. Graves et al. similarly attempt to 

predict errors in code by mining source control histories. 
 

3. Our Loom 
 

We present a new specification miner that works in three 

stages. First, it statically estimates the quality of source 

code fragments. Second, it elevates those quality judgments 

to traces by considering all code visited along a trace. 

Finally, it weights each trace by its quality when counting 

event frequencies for specification mining. Code quality 

information may be gathered either from the source code 

itself or from related artifacts, such as version control 

history. By enhancing the trace language to incorporate 

information from the software engineering process, we can 

appraise the quality of every piece of information 

supporting a candidate specification (traces that adhere to a 

candidate as well as those that violate it and both high and 

low-quality code) on which it is followed and more 

accurately evaluate the probability that it is legal. Section 

3.1 provides a detailed description of the set of features we 

have chosen to approximate the quality of code. Section 3.2 

minutiae our mining algorithm. 
 

3.1 Minutiae of Quality Metrics in our Loom 
 

We characterize and evaluate two sets of metrics. The first 

set consists of seven metrics preferred to approximate code 

quality. Certainly, a major notion of this paper is that 

lightweight and imperfect metrics, when used in 

combination, can usefully approximate quality for the 

purposes of enhanced specification mining. Hence, we 

focus on selecting metrics that can be rapidly and 

automatically computed using generally available software 

artifacts, such as the source code or version control 

histories. The second set of metrics consists of beforehand 

proposed measures of code complexity. We use these 

primarily as baselines for our analysis of metric power in 

Section4 this evaluation may also be independently useful 

given their persistent use in practice [10].  

The metrics in the first set (“quality metrics”) are: 

Code churn. Earlier research has shown that frequently or 

recently modified code is more likely to contain errors [22]. 

Author rank. We infer that the author of a piece of code 

influences its quality. A senior developer who is very familiar 

with the project and has performed many edits may be more 

familiar with the project’s invariants than a less experienced 

developer. 

Code clones. We infer that code that has been duplicated 

from a location may be more error prone because it has not 

necessarily been specialized to its new context (e.g., copy-

paste code). 

 Code readability. Buse and Weimer developed a code metric 

trained on human perceptions of readability or 

understandability. The metric uses textual source code 

features—such as number of characters, length of variable 

names, or number of comments—to predict how humans 

would judge the code’s readability. More readable code is less 

likely to contain errors. 
Path feasibility. Our specification mining technique 

operates on statically enumerated traces, which can be 

acquired without indicative workloads or program 

instrumentation. Infeasible paths are an unfortunate artifact 

of static trace enumeration, and we claim that they do not 

encode programmer intentions.  

Path frequency. We speculate that common paths that are 

often executed by indicative workloads and test cases are more 

likely to be correct. We use a research tool that statically 

estimates the relative runtime frequency of a path through a 

method , normalized as a real number. 

Path density. We speculate that a method with more 

possible static paths is less likely to be correct because there 

are more corner cases and possibilities for error. We define 

“path density” as the number of traces it is possible to 

enumerate in each method, in each class, and over the entire 

project. Path density is expressed in whole numbers and can be 

normalized to the maximum number of enumerated paths 

(30/method, in our experiments). 

 
Fig2 Features used by our miner to evaluate a candidate 
specification<a,b>.Mi is quality metric lifted to sets of traces 
Metrics in the second class(“complexity metrics”) are: 

Cyclomatic complexity. McCabe defined cyclomatic 

complexity to quantify the decision logic in a piece of 

software. A method’s complexity is defined as M= E –N+ 

2P, where E is the number of edges in the method’s control 

flow graph, N is the number of nodes, and P is the number 

of connected components. 

CK metrics. Chidamber and Kemerer proposed a suite of 

hypothetically grounded metrics to approximate the 

complexity of an object-oriented design [3]. The following 

six metrics apply to a particular class (i.e., a set of methods 

and instance variables):1.Weighted methods per class 

(WMC).2. Depth of inheritance tree (DIT).3. Number of 

children (NOC). 4.Coupling between objects (CBO).5. 
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Response for a class (RFC). 6.Lack of cohesion in methods 

(LOCM). 
 

3.2 Minutiae of our Mining Algorithm 
 

Our mining algorithm extends our preceding WN miner 

[7],[14], notably by including quality metrics from Section 

3.1. Our miner takes as input: 

1. The program source code P. The variable l varies over 

source code locations. The variable l represents a set of 

locations. 

2. A set of quality metrics M1 . . . Mq. Quality metrics may 

either individual locations l to measurements, with Mi (l) €R 

(e.g., code churn) or intact traces to measurements, where 

Mi (l) €R (e.g., path feasibility). 

3. A set of important events, generally taken to be all of 

the function calls in P. We use the variables a, b, etc., to 

range over ∑. 

Our miner generates as output a set of candidate 

specifications C = {<a, b>| a should be followed by b}. We 

manually evaluate candidate specification legality. Our 

algorithm first statically enumerates a finite set of intra 

procedural traces in P. Because any nontrivial program 

contains an infinite number of traces, this process requires 

an enumeration strategy. We perform a breadth-first 

traversal of paths for each method m in P. We emit the first 

k such paths, where k is specified by the programmer. 

Larger values of k provide more information to the mining 

analysis with a corresponding slowdown. Experimentally, 

we find that very large k provide diminishing returns in the 

tradeoff between correctness and time/space. Typical values 

are 10 ≤ k ≤ 30. To gather information about loops and 

exceptions while ensuring termination, we pass through 

loops no more than once, and assume that branches can be 

either taken or not and that an invoked method can either 

terminate normally or raise any of its declared exceptions. 

Thus, a path through a loop represents all paths that take the 

loop at least once, a non exceptional path represents all non 

exceptional paths through that method, can be either taken 

or not and that an invoked method can either terminate 

normally or raise any of its declared exceptions. Thus, a 

path through a loop represents all paths that take the loop at 

least once; a non exceptional path represents all non 

exceptional paths through that method, etc. This approach is 

consistent with other researchers’ path enumeration 

strategies, including those used by some of our metric-

collection techniques. We find that the level of detail 

provided by this strategy is adequate for our purposes, but 

note that it is possible to collect additional detail, such as by 

increasing the number of loop iterations. This process 

produces a set of traces T. A trace t is a sequence of events 

over ∑; each event corresponds to a location l. We write a € 

t if event a occurs in trace t and a . . . b € t if event a occurs 

and is followed by event b in that trace. We note whether a 

trace involves exceptional control flow; this judgment is 

written Error (t). Next, our miner lifts quality metrics from 

individual locations to traces, where necessary. This lifting 

is parametric with respect to an aggregation function A: 

P(R) →R. We use the functions max, min, span, and 

average to summarize quality information over a set of 

locations l. M
A 

denotes a quality metric M lifted to traces: 

M
A 

(t)=A({M(l)|l€t})   1 

(metrics that operate over sets of locations do not need to be 

aggregated; M
A 

(t)=M(l) where l is the set of locations in 

t).M denotes the metric lifted again to work on sets of 

traces(T)= A({M
A
(t)|t€T}). Finally, we consider all possible 

candidate specifications. For each a and b in ∑, we collect a 

number of features. Fig. 2 shows the set of features our 

miner uses to evaluate a candidate specification <a, b>. Nab 

denotes the number of times  b follows a in a non error 

trace. Na denotes the number of times a occurs in a normal 

trace, with or without b. We similarly write Eab and Ea for 

these counts in error traces.SPab = 1 when a and b are in the 

same package. DFab =1when dataflow relates a and b: when 

every value and receiver object expression in b also occurs 

in a [14, Section 3.1]. z is the statistic for comparing 

proportions used by the ECC miner to rank candidate 

specifications. The set of features further includes the 

aggregate quality for each lifted metric M
A
. We write Miab 

(resp.Mi a) for the aggregate metric values on the set of 

traces that contain a followed by b (resp. contain a). As we 

have multiple aggregation functions and metrics, Mia 

actually corresponds to over a dozen individual features. 
 

 
Tab.1. Analysis of variance of features in our model. The bottom four 

features are present in the WN miner [31]. 
When combined with the aforementioned statistical 

measurements and frequency counts, each pair <a, b> is 

described by over 30 total features fI. We avoid asserting an 

a priori relationship between these features and whether a 

pair represents a true specification. Instead, we will build a 

classifier that examines a candidate specification and, based 

on learned a linear combination of its feature values, 

determine whether it should be emitted as a candidate 

specification. A training stage, detailed in Section 4, is 
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required to learn an appropriate classifier relating features 

to specification likelihood. 
 

4. Experiments 
In this section, we empirically evaluate our approach. We 

begin by considering the constructed linear model relating 

code quality metrics to the likelihood that a candidate is a 

true specification, and how this model can be used as a 

specification miner. 
 

4.1 Prognostic Control of Quality Metrics 

 
 

In this section, we evaluate the coefficients of the linear 

model to understand the overall predictive power of each of 

our proposed quality metrics, compare the utility of the 

metrics on different benchmarks and qualitatively analyze 

observed differences, and establish the independence of 

many of the quality metrics. 

 
 

marks arouBenchnd Quality Metrics 

 
 

Our first experiment evaluates the relative importance of 

our quality metrics. We perform a per-feature analysis of 

variance on the linear model; the results are shown in  

Tab.1. All of the quality metrics defined in Section 3.1, 

except Cyclomatic complexity, had a significant main effect 

(p≤0:05). The code churn metric, encoding how frequently 

and recently a line of code has been changed in the source 

control repository, was our most important feature. Path 

feasibility is of moderate predictive power; it is, to our 

knowledge, the only feature that had been previously 

investigated in the context of mining [2]. The author rank 

metric is significantly predictive in this analysis, 

overturning previous observations [7] that it has little 

predictive power. These experiments involve a much larger 

benchmark set (1.5 M versus 0.8 M LOC). In addition, we 

enumerate 30 traces per method; in previous work, we 

enumerated 10. These differences appear to account for the 

change: On these benchmarks, author rank increases in 

importance by 50 percent for every 10 additional traces per 

method generated between 10 and 30. The previous set of 

benchmarks may have been insufficiently varied and the 

previous set of traces insufficiently deep, resulting in an 

imprecise model. We also evaluated the predictive power of 

traditional complexity metrics: Cyclomatic complexity and 

the six CK metrics for object-oriented design complexity 

(recall that we weight all methods equally for the purposes 

of the WMC metric). Our analysis of variance shows that 

Cyclomatic complexity has no significant effect on the 

model, and is not predictive for whether code conforms to 

specifications for correct behavior. This is consistent with 

previous research suggesting that Cyclomatic complexity is 

not predictive for code faults [11]. The six CK metrics, 

however, vary in predictive power, though all have a 

significant main effect. With the exception of response for a 

class, which is meant to approximate the interconnectedness 

of the design, the CK metrics are less predictive than the 

other proposed quality metrics. These results suggest that 

the CK metrics may indeed capture an element of code 

quality or complexity, though they vary in their ability to do 

so. In our previous work that examined the relationship 

between error traces and specification false positive rates 

[14], we used several criteria to select candidate pairs: 

Every event b in an event pair must occur at least once in 

exception cleanup code (“Exceptional Path”), there must be 

at least one error trace with a but without b (“One 

Error”),both events must be declared in the same package 

(“Same Package”), and every value and receiver object 

expression in b must also be in a “Dataflow”). We included 

these features in our model to determine their predictive 

power. The results are shown in the lower section of Fig. 5. 

The “Exceptional Path” and “One Error” conditions affect 

the model quite strongly, while the “Same Package” and 

“Dataflow” conditions are less significant. They are not as 

predictive as Code Churn, our most predictive metric. 

 
 

4.2 Rendering of Quality for Specification Mining  

 
Our second experiment presents empirical evidence that our 

quality metrics improve an existing technique for automatic 

specification mining. For each of our benchmarks, we run 

the unmodified WN miner [14] on multiple input trace sets 

of varying levels of quality. The quality of a trace is defined 

as a linear combination of the metrics from Section 3.1, 

with coefficients based on their relative predictive power 

for specification mining (the F column in Tab.1); we use 

this measurement to sort the input trace set from highest to 

lowest quality. We compare WN’s performance on random 

baseline sets of static traces to its performance on high-

quality (and low-quality) subsets of those traces. 

 
Fig. 3. Performance of the WN specification miner on subsets of the total 

trace set. The y-axis shows the percentage of the possible true 
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specifications mined. The false positive rate on high quality (85 percent) is 
lower than on random (89 percent). 
For generality, we restrict attention to feasible traces, since 

other miners such as JIST already disregard infeasible paths 

[2]. In total on all of the benchmarks, WN miner produces 

86 real specifications. On average, WN finds all of the same 

specifications using only the top 45 percent highest quality 

traces: 55 percent of the traces can be dispensed with while 

preserving true positive counts. Since static trace 

enumeration can be expensive and traces are difficult to 

obtain [13], reducing the costs of trace gathering by factor 

of 2 is significant. As a point of comparison, when a 

random 55 percent of the traces are discarded, we find only 

58 true specifications in total (67 percent of the total 

possible set), with a 3 percent higher rate of false positives. 

We next explore the impact that the quality of a trace set 

has on mining success by passing proportions of the total 

input set (all traces from all benchmarks) to the WN miner. 

We perform mining on the top N percent of the traces (the 

“High-Quality” traces), the bottom N percent of the traces 

(the “Low-Quality” traces), and a random N percent of the 

traces. For the Random” results, we presented the average 

of five runs on different random subsets; error bars denote 

one standard deviation in either direction. Fig. 3 presents 

the results of this experiment by showing the percentage of 

the total specification set mined by WN at each trace set 

size for sets of high, random, and low-quality traces. We 

conclude that trace quality has a strong impact on the 

success of the miner. First, the higher quality traces allow 

the miner to find more specifications on smaller input sets 

than do the randomly selected traces; the low-quality traces 

consistently yield far fewer true specifications. 

 
Fig. 4. A finite state machine describing the Hibernate Session API 

To highlight one point on the graph: On 25 percent of the 

input, the high-quality traces yield 65 percent of the total 

possible mined specifications. By contrast, the random 

traces yield less than half, at 43 percent, and the low-quality 

traces, only 2 percent (only two true specifications!). By the 

time the top-quality traces have yielded all possible true 

specifications, the random traces have found 88 percent, 

and the low-quality traces, 63 percent. 

 
 

4.3 Specification Mining on Quality-Based 

 
 

A leave-one-out analysis shows that including the CK metrics 

in the model raises both the true and false positive rates. As our 

goal is useful specifications with few false positives, we omit 

features, even those that are predictive for true positives that 

increase the false positive rate substantially. For each 

benchmark, we report the number of true and false positive 

candidates returned (determined by manual verification). 

Recall the normal miner minimizes both false positives and 

negatives, while our precise miner minimizes false 

positives. For comparison, we also show results of the WN 

[14] and ECC [4] mining techniques. The normal miner 

finds useful specifications with a low false positive rate. It 

improves on the false positive rate of WN by 26 percent, 

while still finding 72 percent of the same specifications. It 

finds four times as many true specifications as ECC. 

Moreover, the specifications that it finds find more 

violations on average than those found by WN: 884 

violations, or 13 per valid specification, compared to WN’s 

426, or seven per valid specification. The precise miner 

produces only one false positive, on Hibernate: 

<S.beginTransaction, T.commit>. Fig. 4 shows the relevant 

API. The candidate behavior is not required because one 

can legally call T.rollback instead of T.commit. However, 

there are no traces on which the false candidate is followed 

on which the true specification is not, and very few on 

which the false candidate is violated while the true 

candidate is not. The precise miner finds fewer valid 

specifications than either the normal miner or the WN miner 

(it finds almost twice as many true specifications as the 

ECC technique), but its 3 percent false positive rate 

approaches levels required for automatic use. Despite the 

one false positive and the fact that it finds 34 percent as 

many specifications as WN, the precise miner still finds 53 

percent of the violations: Each candidate inspected yields 

11 violations on average. This suggests that the candidates 

found by the precise miner are among the most useful. 

5. Conclusion 
Existing automatic specification miners that discover two-

state temporal properties have prohibitively high false 

positive rates. An important problem with these techniques 

is that they treat all parts of a program as equally indicative 

of correct behavior. We instead measure code quality to 

distinguish between true and false candidate specifications. 

Our metrics include predicted execution frequency, code 

clone detection, code churn, readability, and path feasibility, 

among others. We also evaluate well-known complexity 

metrics when used in specification mining. Our loom 

improves the performance of existing trace-based miners by 

focusing on high-quality traces. Compared to previous 

work, we obtain equivalent results using only 45 percent of 

the input and with a slightly, but consistently, lower rate of 

false positives. Our method can also be used alone: To our 

acquaintance, this is the first miner of two-state temporal 

properties to maintain a false positive rate under 89 percent. 

We believe that our method is an important first step toward 
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real-world utility of automated specification mining, as well 

as to the increased use of quality metrics in other analyses. 
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